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SUMMARY

An anslysis based on momentum and continuity considerations is used
to evsluate the totsl-pressure recovery of zero-wave-drag external-
ccmpression supersonic air inlets for the ~ch number range fhm 1.0 to

*
4.0,

4 The geometry of such inlets can cause a significant loss in inlet
totsl-pressure recovery which arises in the process of turning the flow

4 back to the axial direction after supersonic compression. This loss may

A become as large as 20 percent of the computed inlet recovery at Mach 4.0.
0

Some consideration is given to wind tunnel blockage calculations in
which the model drag enters as a parameter, and a criterion is developed
which supplements the ususl Kantrowitz condition.

INTRODUCTION

The design of a supersonic air itiet for a propulsion system usually
requires many compromises to obtain satisfactory over-sll performance.
One such compromise involves the interplay of inlet total-pressure recov-
ery and cowl pressure drag. Large cowl pressure drags are usually associ-
ated with high-performance external-compression inlets (ref. 1, p. 627).
Drag reduction has been obtained primsrilyby decreasing the cowl projects-d
area, that is, by turning the inlet flow back to the sxisl direction more
rapidly.

The limiting form of such a philosophy is the zero-wave-drag inlet
b tn which the external cowling is alined with the free-stream velocity.

The recovery potential of this type of inlet is necessarily less than that

J
of a conventional inlet because of the limited supersonic compression per-
mitted by the requirement of internally attached shocks at the cowl lip.
Further totsl-pressure losses are also incurredby abruptly turning the
inlet flow back to the axial direction.
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An analysis based on momentum and continuity considerationswhereby
these latter losses may be calculated is presented along with s~Y
curves applicable to zero-drag inlets with a sharp centerbody shoulder.
The effect of rounding the centerbody shoulder is also considered as
welJ.as some aspects of permissible inlet contraction and the analogous
problem of wind tunnel blockage.
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( )(1+ rM2) 1 + ‘+ M2 ‘-1 = (1 -!-TM2]@)
M

unit vector

Mach number

Mach number after %ntrowitz contraction frcm Ml

D(M)/G(M)

unit outward normsl vector

totsl pressure

static pressure

dynamic pressrccejq = ; pv2 . $pM2

total-pressure recovery, R = P~PO

bounding surface of integration

velocity

velocity vector

force parameter, eq. (15)

flow angularity at inlet entrance station
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Subscripts:

c

i

R

s

0

1

2

()~

Superscripts:

m

*

ratio of specific heats for air, 1.4

cowl-lip overhang angle, deg

cone half-angle, deg

mass density

P: AR p: A=
—— -—-
Po% ‘o%

cowl

basic inlet

ramp or centerbody

shoulder

free stresm

inlet entrance station

equivalent uniform flow

evaluated at

average value

corresponding

M

to Kantrowitz contraction

ANALYSIS

The momentum equation for the steady flow of a compressible fluid for
h a given control volume may be written in vector form as

(1)

Jif boundary shearing stresses are neglected. The notation S indicates

the integration is to be pe~formed over the entire surface S enclosing
the control volume, while n is a unit outward normsl vector to the sur-
face S. The first integral in equation (1) represents the vector momentum
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leaving the control volume, while the second integrs3 gives
force which the volume exerts on its bounding surface S.

A control volume with a bounding surface S generated

NACATN 4096

B
the resultant

.

by the line
JWCDIWA can be constructed by referring to figure l(a), which-shows a
cross section of a typical supersonic inlet operating at full capture
mass flow. The line segm~nts FA and CD sre teken as perpendicular to the
free-stream flow vector Vo, while the segments m and ~ generate the
centerbody and cowl contours, respectiv~ly. The duct at station CD iS

+
assumed to have its wells parallel to Vo, which corresponds to an inlet m
geometry in which the flow is returned to the sxial direction after super-

-1
+

sonic compression.

Defining the vector ~ to be of unit magnitude and parsllel to the
free-stream flow 70 and taking the scalar product of ‘$ and equation
(1) result in A

This equation is a scalar equation written for the sxial component of
momentum.

(2)
$

The upstreem internsl thrust exerted on the-cowl is given by the
pressure integrel (the second integral in eq. (2]) over the surface gen-
erated by line EDj while the downstream force on the centerbody is given
by the pressure integral over AK!. These two terms can be denoted by
-p;Ac and ~~, respectively, where p: and ~ are the average ef-

fectfve pressures acting on Ac and ~, the internal cowl projected

area and the centerbody projected area, in that order.

—.

—

With the previous notation, equation (2) may be written

p~AR +
J J’
~D(P~”~)~*~~+ P~”~dJW: Ac-Po V&O-P &O=O

CD (3)

where
J’
CD indicates an integration over the surface generated by line

CD. The evaluation of the two remaining integrsls in equation (3) would
require a detailed knowledge of the flow at the station CD. It is con-
venient then to consider the properties of the equivalent uniform flow a“

having the same mass flow and momentum as the nonuniform flow at station
CD. The term uniform here implies constant velocity and fluid properties
across the duct as well as parellel flow, which at station CD is taken

#J

to be in th~ axial direction. By denoting the equivalent uniform flow
—.

with the subscript 2, equation (3) becomes

.
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a perfect gas,

5

(4]

The continuity equation written between FA
D function is

E##(@ = pw(~]
+
n Dividing equation (5) by eqhation (4) yields
&

and CD in terms of the

(5)

D(MO)
N(@ =

( )
[6]

P; AR p: AC
G(%) - ~~-——

‘o %

which determines N(%) if ~ and p: are known. To each value of the

function N there we two corresponding Mach numbers, one supersonic and
one subsonic.
tion since it
tion (6) then
P2/Po may be

The functions

By taking the latter as pertinent to criticsl inlet opera-
evaluates the flow downstream of the terminal shocks, equa-
determines M2, and, consequently, the effective recovery

calculated from equation (5) as

P2 ~D(~)

P.—=~’q
(7)

G, D, and N are tabulated in reference 2.

Equations (6) and (7) cannot be evaluated unless the average pres-

sures P: and p; are known. In genersl, lecause of the uncertainty

in the location of the terminal shock; it is impossible to predict the
internal cowl pressures with any assurance however, for a zero-drag in-
let, which for the purposes of this report wiJJ mean that Ac = O, only

a knowledge of the average pressure on the centerbody is necessary. In
the event the centerkdy is a two-dimensional ramp surface or a si@_e
cone with a s@rp corner at the shoulder (as in fig. l(b) in which BC is

~ parsllel to Vo)~ the average centerbodypressure may be readily calcu-
lated by existing methods. It 3.sassumed that all flow disturbances
from the cowl lip strike the centerbody downstream of the shoulder B, a

*’ ususl condition for the previously mentioned irflettypes which are not
overcontracted.

By referring to the zero-drag inlet geometry with a corner shoulder
as the basic inlet, the effects of geometry changes, such as rounding
the centerbody shoulder, may be determinedly differentiating equation (7)
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m

with respect to Q, where q is the bracketed term in the denominator
of equation (6). Thus, the equation

.

d(P2/Po) d(p~pO} d [D(M2)]d[N(M2)]

dq)
(8)

= d[D(M2)] d~N(l@] ‘q

gives

d(R/Ri]
mm ‘[’-w]bd’w (’~~

where R denotes the total-pressure recovery p#’o> and the subscript

i refers to the basic inlet vslues of R, qJ,and M2 . Thus, equation

(9) evsluates the rate of increase of recovery with respect to Q. From
equation (6) with Ac = 0, N(%) < N(M2). Thus, by equation (9),

F

d(R/Ri)/d(Q/Q ) < 0, which means that in order to obtain an increase in

recovery )
R

d(q qi) must be negative, Orj equivalently, for a given AR

the mean ramp pressure p: must decrease.

For most two-dimensional zero-drag inlets the turning loss may be
calculated without considering the entire supersonic compression process.
If the flow at the entrance station FIBof figure l(b) is uniform, the
control volume enclosed by BC!DEBmay be considered in place of the for-
mer volume. In figure l(c) the volume BCDEB is redrawn to larger scale
with Ml and CL indicating the Mach number and flow inclination of the
entrance flow with respect to the duct BC-~. The specific type of

—

supersonic compression that the free-stream flow ~ undergoes to arrive

at Ml and a is immaterial.

The lip overhang angle rI is a measure of the contraction ratio

By use of equation (2) the

P2G(M.J = PIG(M1)

momentum equation may be written as

() [ cos a cos a -
- 2P1: 1-

%
Cos q

●
‘)1

while the continuity equation is

p2D(~) = PID(h$) ‘:= PID(~) w
2

(U)

(12)
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Dividing equation (12) by equation (n) yields

.

7

Again for given Ml, a, and ~, taking the subsonic root corresponding

to N(%) determines M2 and thus D(~) and gives for the recovery

4 For ~ = a/2 no internal
equation (10). Equations

and

contraction occurs as can be seen from
and (14) then read

(14)

(13a)

()G(Ml) - ~ (1 - Cosa)

‘%

P2 D(@

q=~
(14a)

The case q = 0, where the lip is directly over the corner shoulder B,
also corresponds to the geometry of an unswept uormsl-shock inlet flying
at Ml and an angle of attack a. Equations (13) and (14) may slso be
taken as the equations for swept normal-shock inlets and are equivalent
to those of reference 3 which considers such inlets.

RFSJZTS AND DISCUSSION

Significance of Effective Totsl Presswe

k It is necessary at this point to consider the significance of the
effective totsl-pressure recovery P~Po introduced in the previous

J section, ANALYSIS. Mathematically, P~Po was defined as the total-

pressure recovery of a uniform stream having the same mass flow and totel
momentum at the iulet constant-area throat section as the actus3 nonuni-
form inlet flow. If the inlet were operating at its critics3 point and.
the constant-area throat section were infinitely long, the flow in this
duct would eventusll.ybecome a uniform subsonic stream if wall friction
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is neglected. The recovery of this stream would then correspond to the
effective recovery computed herein and would take into account total-
pressure losses due to mixing at constant sxea. The physical mechanism
giving rise to what has been designated as a turning loss is thus a
combination of internel shock and mixing losses.

Practical zero-drag inlet configurations will not provide sufficient
constant-area throat length for complete mixing to occur. However, in
general$ the throat length should be sufficient to contain the termins2.-
shock system when the inlet is operating critically. If each filament
of the subsonic flow leating the throat is then assumed to diffuse isen-
tropically, reference 4 indicates that the effective recovery titer this
diffusion process will be less than the initisl effective recovery. Thus,
the recoveries presented herein are an upper limit to the effective re-
covery that an engine at the terminus of an ideal subsonic diffuser would
experience.

It is desirable to establish that the effective recoveries of this
report are an upper limit to the average totsl pressure of the flow at
the exit of the subsonic diffuser independent of the subsonic diffuser
configuration or performance. Reference 4 indicates that, for moderate
distortion and effective duct Mach numbers up to 0.7, the mass flow
weighted and effective recoveries sre slmost identicsl. As the mass flow
weighted recovery of the flow leaving the inlet throat cannot increase,
it follows that, under fairly genersl circumstances, the effective re-
covery at the throat is an upper limit to the inlet recovery for all
subsonic diffusers.

Turning-bss Considerations in Diffuser Design and Evaluation

The results of calculations made for single-cone zero-drag inlets
with shock on lip and no internsl contraction using equations (6) and
(7) are presented in figure 2 by the solid lines which give effective re-
covery P2/Po plotted against cone half-angle @ for various free-
stream Mach numbers. For these inlets the throat area was set equal to
the area projected normal to the average flow direction in the conical
flow field at the entrance station. All curves sre terminatedat the lip
detachment value; that is, for larger 9 the conical shock is incapable
of regular reflection at the cowl lip.

The dashed curves were taken from reference 5 and are-included for
comparison to illustrate the variation of inlet total-pressure recovery
if it is assumed that the flow proceeds isentropicdly from the entrance
station EB of figure l(b) to station CD and there undergoes a normal
shock. The lower recovery values given by equations (6) and (7) must
then be attributed to the nonisentropic nature of the process involved
in attaining a uniform axial flow titer supersonic compression, in
essence,a turning loss.

.
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As may be seen from figure 2, the effect of turning losses favors
smaller cone angles for zero-drag single-cone inlets than would other-
wise be indicated. For example, at a Mach number of 4.0 the optimum
cone hslf-angle is reduced to 25° as compsred wtth 320 if turning losses
are neglected.

As explained in the section entitled ANALYSIS, associating ~ and
m tith the find rsmp Mach number and angle permits a ready evaluation
of the totsl-pressure recovery through the ccmibinedturning and terminal-
shock process of a two=dimensional inlet.

Figures 3(a) and (b) are constructed from equations (13) and (14)
for q = a/2 and q = 7*, respectively, and indicate the etient to which
increased turning influences recovery. d

At a= O the vslue of P Pl

is simply the normal-shock recovery for Ml or M!. All curves of figure
3(b) are terminated at the lef% for those values of a for which the lip
reflected shock lies forward of the corner shoulder B. The over-all in-
let recovery would be the product of the recovery P~P1 given by equa-

tions (13) sad (14) and pl/Po, tiich is the recovery through the super-

sonic compression process up to the entrance station.

The curves of figure 4 Uustrate the vsriation in pressure recovery
with Mach number for isentropic ramp and single-wedge zero-drag inlets.
These inlets incorporated no internal contraction and were designed for
=imum recovery consistent with full mass-flow capture. The calculations
for the solid curves include turning losses, while for the dashed curves
these losses were neglected. The decrement in pressure recovery for the
isentropic inlet at Mach 4.0 is 17 percent. A similer calculation for a
maximum contraction isentropic inlet gives a 19-percent decrease.

The performance of single-cone zero-drag inlets was readily evsluated
for the corner-shoulder configuration as the average static pressure act-
ing on the fore psrt of the centerbody was known. For a multicone or
isentropic spike inlet, the average entrance station Mach number and the
flow angle are usually known more accuately than the centerbody surface
pressure. If this is true, equations (13) and (14), or, when appropriate,
figures 3(a) or (b), msy be employed to evaluate the effective recovery
of such inlets using the average Mach number and flow angle to replace
~ and a. The accuracy of such a procedure was checked for the case
of single-cone inlets where, for example, at ~ = 3.0 and 8 = 26° the

exact turning loss from figure 2 is 0.054 Poj while using the mean values

of Mach number and flow angle in the conical field and equations (13) and
(14) yields a loss of 0.052 PO.

All consideration of turning losses has been previously confined to
corner-shoulder configurations. The recovery will increase if the
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centerbody shoulder is rounded off.
related to equation (9) where it was

NACA TN 4096

.
This is indicated by the discussion
shown that ~m, the average pressure-.

acting over the forward projected area of the ramp or centerbody, must
decrease if the recovery is to increase. The extent to which the shoulder
may be rounded, however, is limited by interne3 contraction considera-
tions, as the rounding will increase the entrance srea. Also) for ex-
tensive rounding, the reflected shock from the cowl may strike the center-
body before the shoulder turn is completed, a circumstance which would
tend to increase p;.

An indication of the improvement in inlet performance that might be
expected because of rounding is given by the following examples. A Mach
4.0, isentropic rsmp inlet with the corner shoulder rounded off to a
circular arc as illustrated in figure l(d) a~d with &/~ = 0.1 has a

calculated increase in total-pressure recovery of o.01 P. ccmrparedwith

the corner-shoulder configuration. This is_equivsJ_entto reducing the
turning loss from the originsl 0.09 P. of figure 4 to 0.08 Po. The

same modification at ~ = 3.0 also resulted in only a 0.01 P. in-
crease in recovery. In both examples the pressures on the shoulder were
computed by Prandtl-Meyer theory.

The practicsl use of the momentum-continuitymethod for calculating
inlet recovery is not limited to the case of a uniform flow at the en-
trance station or to shock-on-lip zero-drag inlets. For an inlet operat-
ing at above design speed the compression shock or shocks may fell down-
stream of the cowl lip. For zero-drag two-dhensional inlets the rsmp
pressures may still be calculated, and, thti, equations (6) and (7) may
be used to calculate the recovery. For either the two-dimensional or
axisytm.netricinlet the pressure
body translation as long as the
overcontracts.

Blockage

The function N appearing

recovery will be independent of center-
inlet neither spills flow nor

.

.—

E
4
1+

—-

Considerations

in equation (6) assumes a maximum velue
of 0.4564 at Mach 1.0 for y = 1.4 and decre&es monotonically in ve3ue
on either side of Mach 1.0. Quantitatively, the condition that the func-
tion N yield a meaningful result may be formulated by writing equation

L

(6), with Ac = O, as
--G!

(15)

A plot of the right side of equation (15), designated Z, for y = 1.4
is given in figure 5.



NACA TN 4096 U

.

.

A particular inlet geometry may be such that equation (6) yields
vslues of N greater than N(M = 1.0). If this should happen, the inter-
pretation is that no equivalent flow ~ exists which would satisfy the

inlet geometry; that is, the assumed flow structure is untenable and, as
a result, the inlet will not operate at full capture mass flow.

In order for an inlet of the type in figure l(b) to operate at fulJ

$%
capture mass flow, the centerbody force parsmeter —— ?mzstbe less

Po Ao
than the critical velue Z. For a given ~~po this requirement then

places a lower limit on the over-sll.contraction ratio for the inlet
~/~=1 - (~/~). The use of vsriable-geometry techniques woul.dbe

unsuccessful in circumventing this limitation on over-all contraction
since the criticsl force parameter may not be exceeded at any time sub-
sequent to starting the inlet.

If the inlet centerbody is considered as a wind tunnel model and
the straight inlet cowling as wind tunnel.wslls, the condition specified
by equation (15) and figure 5 determines whether the tunnel may start.
This wind tunnel.starting criterion supplements the usual K&ntrowitz con-
dition in that both criteria must be satisfied.

Ususlly those configurations satisfying the Kantrowitz requirements
will also satisfy the momentum considerations of equation (15). There are
exceptions to this rule, however. For exsmple, a normal-shock inlet oper-
ating at zero mass flow was calculated to block a wind tunnel.if sized
according to Kantrowitz for all Mach munbers up to 4.0, the range of
calculations made. For this case the pressure ~m is the pitot pressure,
and equation (15) requires approximately a 20-percent reduction in model
size to permit starting.

Whenever the starting criterion presented herein is more stringent
than the Kantrowitz requirement, that is, requires a smaller model size,
it means in essence that the wind tunnel nmdel, if sized according to
Kantrowitz, introduces greater totsl-pressure losses in the tunnel flow
than a normal shock spanning the entire test section. For instance, in
the case of the zero-flow normal-shock inlet described previously, the
loss in totsl pressure suffered by the tunnel flow because of the de-
tached bow shock, the shocks following the reexpansion around the inlet
lip, and whatever mixing occurs exceed those of a normsl shock at the

*
tunnel Mach number.

CONCLUDING REMARKS

For zero-drag etiernal-compression inlets a loss in total.pressure
is inherent in tw–ning the flow-back to the axial direction aft~r



12 NACA TN 4096

.
supersonic compression. An analysis based on momentum and continuity
considerations, applicable to most zero-drag inlets, indicates that these
losses may at times become as high as 20 percent of the inlet recovery .
at Mach 4.0. For zero-drag single-cone inlets, the effect of including
turning losses decreases the cone angle required for optimum pressure
recovery.

The momentum-continuity analysis applied to the evaluation of inlet
turning losses yields a wind tunnel starting criterion which supplements
the ususl Kantrowitz condition and is particularly appropriate for the
testing of high-drag models.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics

Cleveland, Ohio, August 12, 1957
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(a) Conventional.

(b) Zero drag, cornershoulder.
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(c) Enlargedview of entrancestation.

(d) Detailof shoulderrounding.

Figure 1. - Schematicdiagrsmof inlet geometries.
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Figure 2. - Performance of single-cone inlets with
no internal contraction.
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Figure 5. - Wind tunnel starting criterion.
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